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A Comparative Study of Several Wind Estimation
Algorithms for Spaceborne Scatterometers

CHONG-YUNG CHI, MEMBER, IEEE, AND FUK K. LI

Abstract—Using the radar backscattering coefficient (o,) measure-
ments over the ocean surface by a spaceborne scatterometer, one can
estimate the near-surface wind by using a geophysical model that re-
lates ¢, to winds and a wind estimation algorithm. The so-called SOS
algorithm, which is basically an algorithm with weighted least squares
in the iog domain (WLSL), was used to process the Seasat SASS data.
In this paper, we compare the performances of seven wind estimation
algorithms, including the WLSL, maximum-likelihood (ML), least
squares (LS), weighted least squares (WLS), adjustable weighted least
squares (AWLS), L1 norm, and least wind speed squares (LWSS) al-
gorithms, for wind retrieval. For each algorithm, we present perfor-
mance simulation results for the NASA scatterometer (NSCAT) [4] sys-
tem planned to be launched in the 1990°s. A relative performance merit
based on the root mean square value of wind vector error is devised
for this comparison study. According to this merit, performances for
all algorithms-are quite comparable. However, the results do indicate
that the ML algorithm performs best for the 50-km wind resolution
cell case and the L1 norm algorithm performs best for the 25-km wind
resolution cell case. We have also considered preaveraging the o, mea-
surements obtained from each antenna beam for the 50-km resolution
wind cell case. The performances of all algorithms are even more sim-
ilar in these cases with preaveraging, although the L1 norm algorithm
performs best. Finally, the issue¢ of using a two-stage wind estimation
method in order to reduce the computational load and its impact on
algorithm performance are discussed.

I. INTRODUCTION

HE DATA FROM many aircraft scatterometer exper-
iments and the SEASAT Scatterometer (SASS) [1],
[2] demonstrated that the radar backscattering coefficient
a,-over the ocean can be used to infer near-surface oceanic
winds through a geophysical model function (examples of
the model function are givén in [1]-{3]). An interesting
characteristic of the geophysical model function is the
double sinusoidal relationship between o, and the relative
azimuth angle (the angle between the wind direction and
the azimuth angle of the radar observation). Thus; at least
two ¢, measurements from two different azimuths are re-
quired to determine the wind speed and wind direction.
The existing geophysical model functions are nonlinear
functions of wind speed, wind direction, antenna polari-
zation, relative azimuth angle, and incidence angle. The
inversion of ¢, measurements to wind vector is not nec-
essarily straightforward because of the existence of var-

Manuscript received June 9, 1987; revised November 16, 1987. This
work was supported by the National Aeronautics and Space Administra-
tion. . ’ . :
The authors are with the Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, CA 91109.

IEEE Log Number 8719109.

ious noise sources in the o, measurements in addition to
the nonlinearity of the model function. The so-called sum-
of-square (SOS) algorithm first developed by Wentz [2],
which is basically a weighted least squares algorithm with
0, expressed in the log domain (WLSL), was used to es-
timate the wind vector for SASS data. However, the al-
gorithm has significant drawbacks in cases with low sig-
nal-to-noise ratios. In such cases, the estimated o, could
be negative due to fluctuations in the system signal and
noise power measurements. Since SASS obtained only two
g, measurements for each 50-km resolution wind cell that
were 90 degrees apart in azimuth, if one or both ¢,’s were
negative, the wind estimation could not be performed.
This could lead to significant biases in the global wind
results. A maximum-likelihood (ML) algorithm in wind
estimation was then considered by Pierson [8]. He re-
ported that the ML algorithm worked well without any
limitations in the values of ¢, measurements.

As a follow-on to the SASS system, the NASA scatter-
ometer (NSCAT) is being developed for launch in the
early 1990°s [4]. A key improvement in NSCAT is the
use of three antennas on each side of the subsatellite track
to provide o, measurements from three, instead of two,
azimuthal angles. Furthermore, the center antenna will be
dual-polarized, so that four g, sets will be obtained from
the three antennas. The ¢, measurements will have a spa-
tial resolution of 25 km. It is envisioned that the o, mea-
surements will be combined to obtain wind vector esti-
mates with resolutions of 25 and 50 km. Four ¢,
measurements will be used for the 25-km case whereas 16
g, measurements will be used for the 50-km case. Due to
these system improvements and the inadequacy men-
tioned above for the SOS algorithm, we have conducted
a systematic study of seven potential wind retrieval al-
gorithms for NSCAT data processing. The seven algo-
rithms are WLSL, ML, least squares (LS), weighted least
squares (WLS), adjustable weighted least squares
(AWLS), L1 norm, and least wind speed squares (LWSS)
algorithms. Among these seven algorithms, only the
LWSS algorithm cannot be found in classical estimation
literature (see Section III).

In Section II, we describe the assumptions including the
model function, the noise variance in the o, measurement,
etc., that were made in our study. We describe the seven
wind estimation algorithms including the objective func-
tions, -computational loads, and other limitations in Sec-
tion III. In Section IV, we present the simulation results
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on the performance of these seven algorithms in terms of
wind vector error for three different swath locations in the
NSCAT design. We rank each algorithm based on the per-
formance merits obtained. We also studied the use of
‘‘preaveraging’’ o, measurements obtained from each an-
tenna beam, before the wind estimation. Finally, we draw
conclusions based on these simulation resuits and discuss
the use of a two-stage wind estimation method in order to
reduce the computational load and its impact on algorithm
performance.

II. SIMULATION ASSUMPTION

An estimation algorithm is generally optimal in the
sense of minimizing a cost function or an objective func-
tion, which is a convex function of the residual between
the measurements and the system model. The error vari-
ance of measurements is important to almost every esti-
mation algorithm. They are usually used to weight the
residuals in the objective function. Therefore, before we
describe the wind estimation algorithms, we present the
model for the noise variance in o, measurement.

The 0, measurement 3, is assumed to be the sum of the
true o, and a random noise n

(1)

a,-is related to the wind through the geophysical model
function. The first geophysical model function used in this
study was the SASS-I model, which is given by

o, = 106UH (2)

where U is the wind speéd, and G and H are two coeffi-
cients that depend on the wind direction ¢, the antenna
azimuth angle, the incidence angle, and the antenna po-
larization (vertical or horizontal) (see [2]). Note that the
wind direction ¢ is implicit in the G and H coefficients
and that the model function is nonlinear in wind speed.
Equation (2) can be expressed in log domain by

log o, = G + Hlog U. (3)

One.can see that for the SASS-I model, log g, is a linear
function of log U (the standard form of the SASS model
function is expressed in the decibel domain, which is 10
times that given in (3)).

The normalized standard deviation of &,, denoted by
Kp(a,), is defined by

12
Ke(0,) = [V“ [”"]}

00

6, =0, + n.

(4)

Thus, Kp(d,) indicates the accuracy of the g, measure-
ment. The noise » in the riormal domain is assumed to be
a Gaussian random variable with zero mean. Chi, Long,
and Li [5] presented a derivation of the K, equation as-
sociated with the NSCAT digital Doppler processing sys-
tem. The derived Kp equation is a quadratic function of
the signal-to-noise ratio (SNR). Therefore, the variance
can be expressed as (through the radar equation of §,)

Var [6,] = ao? + Ba, + 7. (5)

We note that Var [5,] and Kp(0,) cannot be computed
from ¢, measurements because they are functions of the
true g,’s.

III. WiNp ESTIMATION ALGORITHMS

Assume that No, measurements, denoted 6,; fori = 1,
2, - - -, N are available for wind estimation. From here
on, any quantity with subscript i is associated with &,;.
Let us define the residuals of ¢,; and U either in the log
domain or in the normal domain by the following:

a; = 6, — 0. (6)

b, = log 6,; — log g, (7)

¢;=log U, — log U (8)
and

d=0,-U (9)
where

0i - lO(log&ai—Gi)/Hi) (10)

with aoi > 0. Let.ﬁ)i(ooi)’ fbi(oai)’ f;i(aoi)s andfdi(aoi)
denote the variances of a;, b;, c;, and .d;, respectively.
Notice, from (1), (4), and (6), that f;(0,;) = Var [6,].
From (2) thmugh (4) and (7) through (9), one can see that
for small Kp

fb.‘(aoi) = Var [bl] = Var [a(log aoi)]

1 2 aﬂ'o,}
B (m 10> V"“[oo,-

= <1n110>2K%,-(am) (11)
fal0s) = Var [¢] = Var [3(log U)]
= vor| (75) 7 5]
= (555) (3) K300 (12)
andﬁﬁ(%i) = Var [4;] = Var [oU]

] (2]« (G 0o

We note that f;(0,), f5i(04:), fu(d,:), and fy(a,;) are
functions of true g,; rather than 6,;.

The objective function of our estimators is given by the
functional form

N P

4l 4 g.In 87

J(U, ¢) = (14)

The parameters p, g, e;, and §; for each of the seven
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algorithms are given by the following:

1) WLSL algorithm:
p=2,q4=0,¢=b,and 8 = f,;(8,) or
e; = ¢;and 5% = fei (Goi)-

2) ML algorithm:

p= 2’ q= 1’ e; = a, and 612 =.ﬂzi(aoi)-
3) LS algorithm:

p;221=0,ei=ai,and6?= 1.
4) WLS algorithm:

p= 2’ q= 0’ € = a;, and 612 =fai(&ai)-
5) AWLS algorithm:

p=2,9=0,¢=a, and 5% = fai(0,5i)-
6) L1 algorithm:

p= 1» q= 0’ e = a, and 6;2 =fai(&oi)~
7) LWSS algorithm:

P = 2’ q= 0: e = di, and 612 =fdi(&ai)'

Let us clarify the notational confusion for F4i(80i),
.ﬁu’(aoi)’ f;:i(&oi)’ fdi(&oi)’ andfai(ooi) used in these seven
algorithms by stating that f,; (0,;) = fai(x) forx = o,; and
Fuil861) = fu(x) for x = G, All the objective functions
are based on the classic estimation techniques except the
LWSS algorithm. The wind speed U and direction ¢ are
implicit in the above objective functions through the geo-
physical model function. The residuals inside the sum-
mation of each individual objective function are weighted
by a positive quantity. All the above algorithms try to fit
the &, to the geophysical model function with the &, ex-
pressed either in the normal domain or in the log domain.
The WLSL algorithm also attempts to fit the data to the
true wind speed U in the log domain. This feature moti-
vated us to study the LWSS algorithm, which performs
the same estimation in the normal domain. The wind di-
rection is implicit in U; (see (10)), which is uniquely de-
termined by &,; for a given wind direction. The objective
function of the ML algorithm is just the negative log func-
tion of the probability density function of p(b,, i =1,
2, ,N|U, ¢).

The parameter §; determines the relative weight for each
o, measurement. It is logical that noisier measurements
should be given less weight in the objective function
(larger §;). We emphasize that the noise variance and the
K value are functions of the true g,, which is an unknown
quantity. A simple way to estimate these values is to sub-
stitute the &,; into the equation of Var [e;] (albeit it is not
necessarily appropriate in a statistical estimation sense).
The weights of the WLSL, WLS, L1, and LWSS algo-
rithms are based on this rationale and can be computed
once §,; is given. The ML and AWLS algorithms treat the
residual variance as a function of the true g, instead of a
fixed quantity computed from the §,. The LS algorithm
treats all ¢, measurements equally (i.e., no weighting).

The parameter 8; for the LWSS algorithm is a function
.of the unknown quantity U. However, the objective func-
tion Jywss can also be expressed as

N 2 22

1 1\ 02H
J, ,¢) = v T @,
wss(Us 9) = 2 (U U,-> G )
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which is a quadratic function of 1/U, and
U*H? / K3%,(5,) can be computed from &,;. Therefore,
when the wind direction is given or fixed, the LWSS al-
gorithm has a closed form solution for U

= 16
Upwss T (16)
where
N A ry2
H
=2 5 17
h i=1K%’i(Am) ( )
and
N Y2 172
UiH;
T,= 20— 18
2 "=1K%’i(&ot) ( )

In addition, the wind speed solution for the WLSL algo-
rithm is also known to be

Uprse, = 10%/% (19)
where
N 2
H’
S = 2 : 20
! i=1 K%’!(aox) ( )
and
N
log 5, — G))H;
S =% M' (21)

i=1 K %’i ( aoi )

Due to the existence of these closed form solutions, the
computational load for these two algorithms is much
smaller than for the other algorithms, which must solve
for the wind speed by a nonlinear numerical method.
However, these two algorithms use the log function of 6,
for the wind estimation and, therefore, nonpositive &,,’s
are precluded from the wind estimation process.

The other algorithms do not have a closed form solution
for wind speed even when the wind direction is given.
Many numerical methods can be used to search for the
optimal wind speed. The method used in this paper isa
gradient-type iterative search method, called the ‘‘Mar-
quardt-Levenberg’’ algorithm [11], [12]. The wind speed
U, at the (i + 1)™ iteration is updated by

U =U - (H + Di)—lgi (22)
where g; denotes the gradient
' a
8 = o5 (23)
oUu U=U
H; denotes the Hessian
a7
H = — (24)
aU2 U=Ui

J denotes the objective function, D; is chosen such that
(H; + D;) is positive definite, and J(U; 1) < J(U;). of
course, a first guess of U is required to initialize this al-
gorithm. Wind solutions can be obtained by searching for
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wind speeds using the Marquardt-Levenberg algorithm,
and searching for wind directions using a fixed interval
method.

IV. COMPUTER SIMULATIONS OF ALGORITHM
PERFORMANCE

In this section, we present some computer simulations
for the seven wind estimation algorithms using parame-
ters associated with the NSCAT system. In the NSCAT
design, three fan-beam antennas with azimuth angles 45,
115, and 135 degrees relative to the subsatellite direction
will be used on both sides of the subsatellite track. Each
antenna beam provides 1 o, measurement with 25-km res-
olution at a cross track spacing of 25 km. For the pro-
cessing of the NSCAT data by the NASA research pro-
cessing system, wind vector cells of 50-km resolution will
be generated. A grouping procedure will be used for col-
lecting the o, measurements associated with a wind cell
from the multiple antenna beams before retrieving wind.

We will present the simulation results for three swath
locations (near, mid, and far) in which the incidence an-
gles of the g, measurements with the 45 /135 degree an-
tenna beams are 20, 41, and 58 degrees, respectively.
Three different wind speeds (3, 8, and 25 m/s) were stud-
ied. The wind directions were chosen randomly from a
uniform distribution of O to 360 degrees. We also present
the simulation results for the case in which both the wind
speed and wind direction were generated randomly. In this
case, the distribution of wind speeds was chosen to be
Rayleigh distributed with a mean of 8 m/s.

The variance Var [§,] used in these simulations in-
cludes the communication noise, a model function error,
and uncertainties due to spacecraft attitude, antenna
pointing, etc.. The detailed computation of this total vari-
ance will be reported in a separate paper. The o, 8, and
7 coefficients in the quadratic noise variance equation (5)
used in these simulations are shown in Table I. In this
table, each set of «, B, and vy values is associated with a
separate antenna and swath location. For the 25-km wind
cell case, the first set of «, 3, and y was used to generate
0, measurements. For the 50-km wind cell case, the first
set of «, 3, and y from each antenna was used for 20,
measurements and the other set of «, 8, and y was used
for the other 20, measurements. The simulations pro-
ceeded as follows: for an input wind speed and wind di-
rection the true o,; was computed based on the SASS-I
model function; a gaussian random noise with the vari-
ance computed using (5) was then generated by a random
number generator; the §,; was obtained by adding the noise
to the true o,,;; a wind vector was then retrieved by each
of the seven algorithms. The wind vector error € is de-
fined as follows:

e=vV-Vv (25)

where V is the true wind vector and V is the estimated ’

wind vector. Usually, two to four wind solutions, called
ambiguities, were obtained using the wind estimation al-

TABLE I
o, B, AND 7y VALUES IN THE NOISE VARIANCE EXPRESSION

NEAR MID FAR

Ant o 5 y a B ~
(no.) | x107% | x107% | x107% | x107% | x10~® | x10~° | x10~? | x10~% | x10~7
1 [458 [187 [167 (484 |744 [105 [529 |6.96 |4.93
461 150 |101 488 [687 079 |540 8.8 |6.70
2 [480 1308 [148 [504 [125 |1.76 [518 [512 |1.88
471 (251 |099 [500 |105 |11 |517 [4.69 |1.77
3 [458 |187 [167 (484 |744 |1.05 [531 [740 |5.21
460 [1.50 |[101 488 [687 |0.79 [539 [878 6.1

gorithm. The ambiguity that was closest to the true wind
vector among all ambiguities was chosen to be the esti-
mated wind vector in our simulations. The statistical rms
error for | €|, denoted egy;s, was computed by averaging
over 10 000 independent wind estimations. The simula-
tion results for all the algorithms studied were obtained
using the same set of 6,; data. Although the current
NSCAT wind measurement accuracy is specified in terms
of wind speed measurement accuracy and wind direction
measurement accuracy, we used the wind vector error in-
stead of the wind speed error and the wind direction error
in this comparison study. The reason is that it is difficult
to compare any two algorithms when the wind speed error
is smaller for one algorithm and the wind direction error
is smaller for the other algorithm or vice versa. Since wind
vector error is a combination of wind speed and direction
error, this dilemma will not occur.

Table II shows the simulation results for wind speeds
of 3, 8, and 25 m/s. From this table, one observes that
the performances for all the algorithms are quite compa-
rable. No single algorithm was obviously far superior or
inferior to the others. One can also see that the perfor-
mance of each algorithm is better for the 50-km resolution
case than for the 25-km resolution case. This is intuitive
because 16-0, measurements were used for the 50-km res-
olution cell rather than 4-0, measurements for the 25-km
resolution cell. The performance is best at the mid swath
location while the performance at the far swath is better
than at the near swath except for the case with 3 m/s wind
speed. The second set of simulation results are for both
random wind speeds and wind directions; the results are
shown in Table III. One can observe, again, that the per-
formance at the mid swath is the best and the performance
at the far swath is the second best. The performance is
determined by the SNR or Kp values and the wind sensi-
tivity of the geophysical model (absolute H values in the
SASS-I model). The performance is better for smaller Kp
values and for larger wind sensitivity. Both the Kp values
and the wind sensitivity increase from the near swath
through the far swath. The combination of Kp values and
| H| values results in best performance at the mid swath
location.

We have evaluated the standard deviation of the simu-
lation results with a 10 000-sample size by using different
sequences of random numbers and found that it is about
2.5 percent of the simulation results. For each simulation
case (three swath locations and three wind speeds), we
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TABLE II
PERFORMANCE SIMULATION RESULTS egys (IN METERS PER SECOND) FOR
FixeEp WIND SPEED CASE

25 KM 50 KM

ALG. [NEAR [MID | FAR | NEAR [ MID | FAR

wind speed 3 m/s
WLSL | 1.32 1.3¢ | 2.03 | 0.87 092 |1.68
ML 130|111 |1.60 |0.80 |0.66 | 1.07
LS 145 105 164 |093 |0.67 |1.10
WLS |143 |1.14 |161 [1.01 |0.74 |1.12
AWLS [1.35 |1.14 | 163 [0.86 [0.69 |1.10
L1 127 [0.98 [1.39 (087 |0.63 |1.02
LWSS |1.44 1.39 [2.19 [1.06 |1.02 |202

wind speed 8 m/s
WLSL [ 2.85 |1.65 |1.84 |1.56 |0.89 |1.00
ML 2.78 | 165 |1.81 |1.52 |0.85 |0.96
LS 340 184 [218 |1.96 |[1.10 |1.21
WLS |3.14 1.83 (201 |2.14 |1.31 |1.42
AWLS | 2.89 1.65 | 1.80 | 1.65 |0.89 |0.99
L1 2.82 | 1.57 | 167 {1.78 |[0.98 |1.11
LWSS [297 |162 |1.87 |1.79 |0.87 |1.04

wind speed 25 m/s
WLSL [ 811 |[6.56 | 7.81 |4.45 |3.71 |4.52
ML 771 | 649 |7.55 [4.17 |3.44 | 4.00
LS 859 | 7.18 [8.99 |4.67 |4.11 |4.82
WLS |8.77 |7.41 [8.90 (619 |5.52 |6.71
AWLS [8.12 1643 |7.54 | 450 |3.52 [4.11
L1 783 625 | 717 [5.02 |[4.09 |4.87
LWSS 1832 644 |766 |4.84 |3.49 |4.23

TABLE III

PERFORMANCE SIMULATION RESULTS €gys (IN METERS PER SECOND) FOR
THE CASE THAT BOoTH WIND SPEEDS AND WIND DIRECTIONS ARE RANDOM

25 KM 50 KM
ALG. [NEAR [MID [ FAR | NEAR [ MID | FAR
WLSL {313 [2.07 |2.38 | 1.74 - | 1.20 | 1.49
ML 3.02 204 | 222 | 167 1.06 | 1.20
LS 360 |222 262 |207 1.35 | 1.52
WLS | 340 |2.20 |2.48 | 237 1.62 | 1.81
AWLS | 3.17 2.03 |2.22 | 1.81 1.11 | 1.24
L1 3.06 1.93 | 2.10 | 1.97 1.25 | 1.40
LWSS [3.26 |2.06 |240 |1.95 1.17 | 1.58

give each algorithm a merit M defined as follows:

b

where min (egys) is the minimum value of ez among
all the seven algorithms. Finally, the seven algorithms
were ranked using the accumulated M values over all the
simulation cases. The ranks for both the 25-km resolution
and the 50-km resolution cases are shown in Table IV.
One can see that the ML algorithm was ranked the best
for the 50-km resolution case and the L1 algorithm was
ranked the best for the 25-km resolution case.

Next, we present the results when the o, measurements
were ‘‘preaveraged’’ within a 50-km wind cell. For each
antenna beam, the preaveraged o, measurement g, is de-
finéd as the arithmetic average of all the ¢, measurements
within the 50-km resolution wind cell

ems < 1.05 - min (eRMs)

M= (26)

otherwise

o (27)

where M is the number of ¢, measurements, and g,,;’s are
the 25-km ¢, measurements. Similarly, the incidence an-
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TABLE IV
RANKS FOR EACH ALGORITHM
Fixed wind speeds ' Random wind speeds
and random directions | and random directions
ALG. [25KM] 50 KM 25 KM 50 KM
WLSL| 3 | 3 3 3
ML 2 | 1 to3 1
LS 5 5 4 4
WLS 5 5 4 4
AWLS 4 2 2 2
L1 1 4 1 | 4
LWSS 4 4 1 | 4

gle and azimuth angles associated with g, are defined as
the arithmetic average of the corresponding quantities as-
sociated with the ¢, measurements used in the 50-km res-
olution wind cell. The «, 8, and + values (coefficients of
residual variance) associated with o, are defined as

M
2 Y,

i=1

- 1
Y= i (28)
where ¥; = o, B;, or y;. The four preaveraged ¢, mea-
surements and associated parameters were then used to
estimate the wind using each of the seven algorithms. This
preaveraging process reduces the chance of having nega-
tive g, data (which cannot be used by the WLSL and
LWSS algorithms) as well as reduces the computational
load significantly. The simulation results for this case are
shown in Table V. Comparing the results shown in Table
V and the corresponding results shown in Tables II and
III, one can observe that with the preaveraging process,

(R1) the performance of the WLSL algorithm degraded
at near swath but improved at mid and far swaths;

(R2) the performances of the ML and AWLS algo-
rithms degraded at near swath but remained unchanged at
mid and far swaths;’

(R3) the performance of the LS algorithm remained un-
changed;

(R4) the performances of the WLS, L1 norm and LWSS
algorithms improved.

The reason for (R4) may be explained as follows: the
computed weights (6;) (see Section IIT) of the residuals
(e;) for the WLS, L1, and LWSS algorithms were more
accurate estimates of the variances of the residuals using
the preaveraged o, measurements. The LS algorithm does
not need to compute any weights, so it is insensitive (R3)
to the preaveraging process. The degradation of the ML
and AWLS algorithms (R2) is due to a lack of knowledge
about the probability density function of the preaveraged
g, measurements. For the WLSL algorithm, the effects of
the preaveraging process are not clear. Since the perfor-
mance of the ML and AWSL algorithms (ranked first and
second in Table IV) degraded and the performance of the
WLS, L1, and LWSS algorithms improved, the relative
performances of all algorithms are even more uniform
when preaveraged data is used. The L1 norm algorithm
performed best rather than the ML algorithm when preav-
eraged data is used. Finally, from Tables II, III, and V,
in coniparing the ML algorithm with no preaveraging
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TABLE V
PERFORMANCE RESULTS (m/s) BY PRREAVERAGING THE DATA OBTAINED
FROM EACH ANTENNA BEAM

50 KM

ALG. [NEAR [MID [ FAR | NEAR [MID | FAR

wind speed 3 m/s | wind speed 25 m/s
WLSL | 0.90 0.76 | 1.30 | 4.40 3.54 | 4.29
ML 0.95 0.68 | 1.09 | 441 3.55 | 4.14
LS 1.05 0.67 |1.10 | 4.66 4.09 |4.81
WLS |[0.95 0.68 | 1.10 | 4.51 3.69 | 4.35
AWLS | 0.98 0.68 | 1.10 | 4.46 3.56 |4.17
L1 0.82 0.55 | 0.88 | 4.24 3.21 |3.76
LWSS | 0.94 0.79 | 1.42 | 4.44 3.55 | 4.27

wind speed 8 m/s | random wind speed
WLSL | 1.69 0.88 | 0.97 | 1.83 1.12 | 1.32
ML 1.71 0.88 (0.98 | 1.84 1.11 | 1.22
LS 1.95 1.08 | 1.21 | 2.05 1.34 {1.52
WLS 1.76 091 |1.01 {190 1.14 {1.27
AWLS | 1.75 0.88 | 0.98 | 1.88 1.12 | 1.23
11 1.60 0.81 {0.89 | 1.75 0.99 |1.11
LWSS | 1.72 0.88 (097 | 1.85 1.12 | 1.35

(ranked best) with the L1 norm algorithm with preaver-
aging (ranked best), one can see that the ML algorithm is
better at the near swath location, and worse at the mid and
far swath locations.

We have repeated the above simulations using the geo-
physical model function reported by Wentz et al. [3].
Similar conclusions were obtained.

V. DiscussioN AND CONCLUSIONS

In this paper, we have presented a comparative study
of seven wind estimation algorithms using simulated scat-
terometer g, measurements. We have presented the ratio-
nale for the weights used in each algorithm. The perfor-
mance of each algorithm was based on the rms wind vector
error. From the simulation results, although the ML al-
gorithm is ranked the best for 50-km wind vector cell res-
olution (with 16-¢, measurements) and the L1 norm al-
gorithm is ranked the best.for 25-km resolution (with 4-
0, measurements), performances of all algorithms are
quite comparable.

We have also presented results when the o, measure-
ments within a 50-km wind cell obtained from each an-
tenna beam were preaveraged and then used to estimate
the wind. The results showed that performances of all al-
gorithms were closer to each other. The L1 norm algo-
rithm performance ranks best, rather than the ML algo-
rithm. We feel that these conclusions will not differ
significantly if a different preaveraging process is used.

The simulation results presented are based on the cur-
rent projected NSCAT instrument performance. After the
instrument fabrication is completed, its performance may
be different from the present estimated performance. For
instance, the transmit path loss and the noise figure of the
receiver may improve (i.e., smaller), the antenna gain
pattern may vary, etc.. The coefficients 8 and 1y in the noise
variance will be different for different SNR’s. We have
performed another set of simulations for the case in which
the system SNR was arbitrarily changed by +2 db and
another case by —2 db. The same conclusions were drawn
regarding the relative performance of the algorithms.

Based on these results, preaveraging the data and then es-
timating the wind using the L1 algorithm is potentially a
good approach for NSCAT data processing from both the
computational and performance points of view.

We note that the WLSL and LWSS algorithms have the
limitation of using only positive data. Although they have
such a limitation, their performances are not significantly
worse than any other algorithms except for the low wind
speed case (corresponding to low SNR—which leads to
more negative measurements). Due to the existence of the
closed form solutions for wind speed, they are computa-
tionally faster than the-other algorithms. The solutions as-
sociated with these two algorithms are candidates for in-
itializing the other nonlinear wind estimation algorithms
if there is a strong constraint on computational load.
However, for low SNR cases, they may not be adequate
to generate good initial solutions. One can check the qual-
ity of the initial guesses by computing the second deriv-
ative (Hessian) of the chosen objective function for the
solutions associated with these two algorithms. If the sec-
ond derivative is less than zero, it implies that the initial
solution is not in the vicinity of the local minimum of the
chosen objective function. In this case, other initial so-
lutions must be obtained; for instance, a binary search
over the maximum wind speed range that can be deter-
mined from the ¢, measurements with the upwind and
down directions. Therefore, we envision the following
two-stage wind estimation method. It retrieves the wind
first by use of a computationally fast wind estimation al-
gorithm such as the WLSL algorithm. If the estimated
wind speed is more than a threshold (e.g., 6 m/s) the
accuracy of the estimated wind may be deemed to be suf-
ficient and further refinement using a nonlinear wind es-
timation algorithm is not required. Otherwise, this esti-
mated wind is used as the initial condition for the
nonlinear wind estimation algorithm to improve the wind
estimation. From both the computation and wind estima-
tion accuracy points of view this method is useful.

Research on the geophysical model function is proceed-
ing. In the future the commonly accepted model function
may not allow any closed form solution. The computa-
tional load will then be about the same for any wind es-
timation algorithm. However, preaveraging of the data is
still a good approach.

The seven algorithms studied here obviously do not in-
clude all possible wind estimation algorithms. They are
just the more popular ones in the estimation field. How-
ever, we do believe that they form a representative set of
wind estimation algorithms.
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